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Executive Summary
Since 1988, wild salmon have been PIT-tagged through monitoring and research programs

conducted by the Columbia River fisheries agencies and Tribes. Information from these studies is

presented in reports by the Fish Passage Center (1994, 1995, 1996, 1997), National Marine Fish-

eries Service (Accord et al. 1992, 1994, 1995a, 1995b), Idaho Department of Fish and Game

(Kiefer et al. 1993, 1994), Oregon Department of Fish and Game (Walters et al. 1993, 1994a,

Keefe et al. 1994b) and the Nez Perce Tribe (Ashe et al. 1995). Workers at the University of

Washington have used detection data at Lower Granite Dam to generate predictions of arrival dis-

tributions for various stocks at the dam (Townsend et al. 1995, Townsend et al. 1996). The predic-

tive tool is known as RealTime.

In 1996, RealTime predictions were linked to a downstream migration model, CRiSP.1. The

composite model, known as CRiSP/RealTime, predicts the arrival distributions and fraction trans-

ported at downriver locations. Predictive runs were made weekly and published on World Wide

Web pages. Results are reported for Little Goose, Lower Monumental, and McNary Dams for fish

passage. Reports for multiple locations are made for river condition modeling.

CRiSP.1 takes as inputs fish releases, generated by RealTime, and river conditions. Since

water quality affects fish migration and survival, temperature, and dissolved gas levels are mod-

eled from flow and spill forecasts. The effectiveness of these modeling efforts are compared to

observations of passage and river conditions at the end of the season. The analyses and graphic

presentations herein demonstrate changes in accuracy of the models throughout the season.
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1 Introduction

In the Spring of 1996, Columbia Basin Research launched a prototype run timing foreca

CRiSP/RealTime, with results updated weekly on the World Wide Web. This project was

launched in an effort to provide real-time inseason projections of juvenile salmon migration

managers of the Columbia-Snake River hydrosystem so that salmon management policy c

based on up-to-date information, and so that the impacts of management decisions could b

quickly assessed. This forecaster takes the arrival distributions of various stocks at Lower G

Dam, as predicted by the RealTime PIT Forecaster (Townsend et al. 1996; Townsend et al.

and extends those predictions downstream to other sites on the Snake River (Little Goose,

Monumental, and Ice Harbor dams) and lower Columbia River (McNary dam). At the same

CRiSP/RealTime produces estimates of the fraction of the run arriving at Lower Granite da

which was subsequently transported at the three Snake River transport projects (Lower Gr

Little Goose, and Lower Monumental dams).

This report is a post-season analysis of the performance of the CRiSP portion of the Rea

complex. Observed 1998 data were compared to predictions made by CRiSP/RealTime dur

1998 outmigration for arrival timing, water temperature, flow, and spill at various dams.

2 Methods

The methods used here are based on methods developed and reported in Hayes et al. 

2.1 Data

2.1.1 Travel Time Data

The fish analyzed in this study are from spring/summer chinook which originate from se

tributaries of the Snake River: Catherine Creek, Imnaha River, Minam River, South Fork Sa

River. Pervious post-season analyses also included Lostine River (1997) and South Fork W

River (1996, 1997) stocks. The fish were tagged in their natal streams with passive integra

transponder (PIT) tags. PIT tagging of wild salmon continues monitoring and research prog

conducted by the Columbia River fisheries agencies and Tribes since 1988. Information fro

these studies is presented in reports by the Fish Passage Center (1994, 1995, 1996), Natio
1
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Marine Fisheries Service (Achord et al. 1992, 1994, 1995a, 1995b), Idaho Department of Fi

Game (Kiefer et al. 1993, 1994, 1997), Oregon Department of Fish and Game (Johansson

Keefe et al. 1994, Walters et al. 1993, 1994) and the Nez Perce Tribe (Ashe et al. 1995). T

tags provide instantaneous passage times for individual fish at interrogation sites (Prentice

1990). The four observation sites addressed in this report are Lower Granite, Little Goose 

Lower Monumental Dams on the Snake River and McNary Dam on the Columbia River.

In addition to the individual stocks, a “composite” stock was formed by combining all fou

stocks together, weighting each stock equally, following guidance from NMFS.

For the CRiSP downstream projections, we are limited to using historical data since 199

order to estimate fish travel time parameters and confidence intervals. Although fish were P

tagged previous to these years, there was no provision made to return detected PIT-tagged

the river. Consequently, the majority of fish observed at Lower Granite Dam were removed

the river by transport operations. Too few fish were subsequently observed at downstream 

gation sites to generate passage distributions and travel time estimates. In 1993, slide gate

installed which selectively diverted PIT-tagged fish back into the river, allowing for adequat

sample sizes at the downstream interrogation sites.

2.1.2 Flow, Spill and other system operation data

Any forecast of fish movement relies critically on accurate forecasts of flow, spill, transp

tion, and other key system operations. The Bonneville Power Administration generates flow

spill, and reservoir surface elevation forecasts at a number of projects on the Columbia and

Rivers (projects used in CRiSP/RealTime are listed below in Table 1) utilizing water supply

casts based on a number of factors: the National Weather Service’s Northwest River Forec

Center predictions, flood control requirements from the U.S. Army Corps of Engineers, elec

power demand forecasts, and other criteria. The substantial uncertainty associated with sp

time conditions often results in frequent and marked changes in these forecasts during Apr

May. Moreover, attempts to reduce the biological impacts of dissolved gas generated from

spill levels also results in a shifting of spill between projects within as well as outside the ba

Although the forecasts covered as much as 120 days into the future, it must be recognized

their principal use was in deciding operations for the next week. Forecast accuracy beyond
2
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few days was itself uncertain. These forecasts were made available to CBR staff at regular

vals; fish arrival predictions were made using the most recent available flow/spill/elevation 

casts. As a result, forecasts of fish arrival times and river conditions vary between prediction

hindcasts may be based on the latest available data rather than the previous forecast.

2.1.3 Temperature Data

The temperature time series used in the CRiSP analysis is a combination of year-to-da

perature data and forecasted temperatures. The forecasts were based on historical tempera

flow information and the 1998 flow forecasts. The historical data includes flow and tempera

Table 1: Dams for which flow/spill/elevation forecasts were
made available by BPA.

Dam Abbrevia-
tion

Dworshak DWR

Lower Granite LGR or
LWG

Little Goose LGS

Lower Monumental LMN

Ice Harbor IHR

Chief Joseph CHJ

Wells WEL

Rocky Reach RRH

Rock Island RIS

Wanapum WAN

Priest Rapids PRD

McNary MCN

John Day JDA

The Dalles TDA

Bonneville BON
3
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profiles from LWG, PRD, and TDA reservoirs for the years 1976 through 1998. This data w

obtained from the Army Corps of Engineers water quality database. Temperature predictio

made by applying a five-day moving window to fit predicted temperature time series to histo

average patterns of temperature change. This method is described in detail in the “Temper

prediction” on page 11.

2.1.4 Total Dissolved Gas Data

The dissolved gas data are from the ACOE fixed monitors below the dams. This data c

directly from the ACOE as soon as it is available and quality assurance is not always be gu

teed. Anomalies in observed TDG data are indicators of suspicious data. These data are la

rected by the ACOE. Corrected data is used whenever possible and may alter hindcasts. T

current ACOE water quality data can be consulted for reference. ACOE also posts a status

for each monitor, including information on which monitors are not reporting data.

TDG forecasts in particular are sensitive to predicted flows and planned spill. For histori

dictions, the accuracy of the gas predictions will depend on the of quality of the historic spil

input. Data QA/QC is an ongoing process. With the correct spill data, TDG predictions are 

cally within 5% of the observed gas levels.

2.1.5 Archives of model predictions

Each time the RealTime and CRiSP models are run, results are archived for future refe

Graphs and text reports based on these same archives are available through a variety of q

tools on the World Wide Web. The home page for this project and other Columbia Basin

Research products can be found at http://www.cqs.washington.edu. Runs are made severa

per week and outcome recorded. Archives include arrival time forecasts at each dam for ea

stock of interest and water quality predictions for selected dams on the Columbia and Snak

ers.

2.2 Models

2.2.1 CRiSP
4
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CRiSP is a complex model which attempts to capture the mechanisms controlling move

and survival of juvenile salmon in the Columbia and Snake Rivers. The theory, calibration, 

validation of the model is described in detail in Anderson et al. (1996). We include only a b

summary of the model here, but we note that it has been extremely successful in fitting all 

yearling chinook survival data collected in the Columbia Basin, from 1966 through the pres

day.

Modeled factors that affect survival of hatchery and wild juvenile stocks include daily flo

river temperature, predator activity and density, nitrogen supersaturation, and river operatio

such as spill, fish transportation and bypass systems. For CRiSP/RealTime, flow and spill w

provided by BPA, and temperature forecasts were developed based on those flow estimate

other relevant parameters were determined at CBR, based on a variety of different sources

Dam passage changes with fish guidance efficiency, passage mortalities, and diel pass

behavior. These factors are modeled on a species and dam-specific basis. Relevant mode

eters for in-season modeling of yearling chinook stocks are given in the appendices. These

eters are generally drawn from the literature or are calibrated from related data (e.g. PIT ta

detection rates at various projects). Reservoir mortality depends on several factors: fish tra

time, predator density and activity, nitrogen supersaturation levels, and water temperature.

study, predator densities were estimated from indexing studies carried out in 1994 (Parker

1994), and generation of nitrogen is modeled using the US Army Corps of Engineers’ “GAS

SPILL” model (Roesner and Norton 1971, Boyer 1974). Fish migration rate is critical in det

mining downstream arrival distributions (for more detail see section 2.2.3 ).

2.2.2 Travel Time components

The main factor determining predicted arrival distributions at the downstream sites is th

travel time between Lower Granite and the sites. Travel time in CRiSP is determined by a r

model and a migration rate model.

The river is divided into a series of reaches, and fish move through the reaches sequenti

each reach, the travel time distribution is determined by the migration rate (rt) and the rate of

spreading (VVAR) (Zabel and Anderson 1997).
5
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Migration rate varies by reach and by time step and is stock specific. The CRiSP migra

rate equation takes into account fish behavior related to river velocity, seasonal effects, an

experience in the river (Zabel et al. 1998). For the yearling chinook analyzed here, we did n

detect any seasonal behavior, so a reduced equation is used:

, (1)

where

 is the time-dependent migration rate;

 is the Julian Date of passage at Lower Granite;

 and  are flow-independent parameters;

α1 is a slope parameter for the flow-independent term;

 determines the proportion of river velocity used for migration, and

 is the average river velocity during the average migration period, determined for 

reach.

The flow-independent part of the equation starts fish at a minimal migration rate (βMIN) with fish

increasing their flow-independent migration rate to a maximal migration rate (βMAX). These rates

are determined as follows:

(2)

. (3)

The parameterα determines the rate of change fromβMIN to βMAX, and for the wild Snake River

chinook salmon this parameter is set to 0.3 so that the maximal flow-independent migration

reached within approximately 10 days. For each stock, the rate of spreading parameter (VVAR) is

estimated, along with the three migration rate parameters from the above equations:βMIN, βMAX,

andβFLOW.

2.2.3 Parameter Estimation

r t β0 β1
1

1 exp α1 t TRLS–( )–( )+
---------------------------------------------------------- βFLOW Vt⋅+ +=

r t

TRLS

β0 β1

βFLOW

Vt

βMIN β0 β1 2⁄+=

βMAX β0 β1+=
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Migration rate parameters and the spread parameter (VVAR) were estimated from the historica

data using an optimization routine that compares model predicted passage distributions to

observed ones. The first step is to use the passage distribution at Lower Granite as a relea

bution in the CRiSP model. Based on an initial set of parameters, arrival distributions are g

ated at the downstream observation sites. The model predictions are compared to the

observations, and then the optimization routine selects a new set of parameters to try. This

dure iterates until the optimal set of parameters is selected.

The modeled mean travel times are a function of the model chosen and the particular p

ter values selected. The migration rate parameters were estimated by a least-squares minim

(with respect to the parameters) of the following equation:

, (4)

where:

• O is the total number of observation sites,
• C is the total number of cohorts,

•  is the modeled mean travel time to thei-th site by thek-th cohort, and

•  is the observed mean travel time to the i-th site by thek-th cohort.

2.2.4 Confidence Interval calculation

The 95 percent confidence intervals reflect the accuracy of previous years’ predictions.

provide an estimate of the reliability of this year’s predictions.

The confidence intervals were constructed using a jackknifing method. That is, for each 

years of historical data, predictions were generated using the remaining years of historical 

(with the one year omitted). The performance of these jackknifed historical predictions yield

fidence intervals on a daily basis.

First, some definitions, which apply to a particular stock at a particular site:

 is the cumulative passage distribution to timet for the ith year (i = 1,2,...,n).

SS Ti k,
ˆ Ti k,–( )

2

k 1=

C

∑
i 1=

O

∑=

Ti k,
ˆ

Ti k,

Fit
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 is the model predicted cumulative passage distribution. This distribution is base
jackknifed data.

t is the number of days since the first fish arrived at the observation site for a particu
year.

We want to compute the variance in predicted percent passage for eacht. The first step is to

compute the sample variance for each t:

, (5)

with n = the number of years of historical data. The factor of 100 is included to convert the C

(with range 0 to 1) to percentages (with ranges 0 to 100).

Finally, the 95 percent confidence interval for a particular t is computed as

. (6)

2.2.5 Assessment of predictions

To assess the performance of the passage and other predictions, we apply the same m

used to assess RealTime predictions (Townsend et al. 1996). For each stock at each obse

site, we computed the Mean Absolute Deviation (MAD) for the day (j) on which the prediction

was made. This measure is based on the average deviation between predicted and observ

lative passage on prediction dates during the season.MAD is computed as:

(7)

where:

j = forecast day on which MAD is calculated

t = day of the prediction

 = observed cumulative passage on dayt,

 = predicted cumulative passage on dayt,

F̂ i t,

St
2 1

n 1–
------------ Fit F̂ i t,–( ) 100×( )2

i 1=

n

∑=

100 F̂ i t, St
2 t0.05 2( ) n 1–,⋅±⋅

MADj
1
N
---- Ft F̂t– 100×

t 1=

N

∑=

Ft

F̂t
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N = number of dates on which predictions were made during the season.

For each stock/site combination, the season length is determined as follows. The seaso

begins when the first fish for the particular stock is observed at the site. The season ends t

weeks after the last fish is observed at the site. This arbitrary “tail” of the distribution accoun

the possibility that fish may subsequently pass without being detected; the same two-week

used to generate MADs for RealTime. The summation in Equation (7) is performed over the

on which model predictions were implemented – approximately every other day during the 

son.

We expect a general decrease in MAD as j goes from 1 to N. The last MAD value (MADN) is

used in Table 3 as the final analysis of model success.

2.2.6 Temperature prediction

A temperature forecasting algorithm was developed to predict this year's water tempera

on the Snake and Columbia Rivers based on historical data, year-to-date data, and the BP

forecast. River temperatures in the near future are based on the current trend in temperatu

far into the future the algorithm relies on the mean temperature profiles and adjusts this me

according to how much flow there is. Mean temperature and flow profiles were computed f

LWG, PRD, and TDA using data from the years listed in the above section. The most curre

year-to-date temperature and flow data are accessed each time a prediction is made. Thes

dams’ temperature profiles were then used in CRiSP as representative of the Snake, mid- 

lower Columbia, respectively.

The forecast algorithm begins by setting the daily temperature to the mean for that day 

then replacing the mean temperatures where year-to-date information is available.  The last

of available temperatures are looked at to predict the next day's temperature.  Averaging o

last five days is an attempt to smooth out some of the day to day variation and to provide a

guard against bad data giving the algorithm a faulty starting point.  Given the averaged sta

point, the next 3 weeks of temperatures are calculated by taking the previous day's temper

and adding to it the average daily temperature increment for that day.

Over time the current trend of temperature becomes less and less useful and eventually
9
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related with future temperatures.  Thus after three weeks this predictor is phased out of the

lation.  This is when the flow forecast information enters into the algorithm. The flow foreca

together with the mean profiles of flow and temperature predict what temperatures a month

more from reliable data will be. The relationship between flow and temperature is the follow

(8)

Temperature was measured in Celsius and flow in kcfs. Because there is reliable histor

temperature data typically only from April to September, these regressions and the flow ad

ments were only done within this time interval. The historical data for each of three location

(LWG, PRD, and TDA) spanned 1976-1995. For the remainder of the year the unadjusted 

temperature profiles are used.

2.2.7 Total Dissolved Gas Modeling

The fixed monitors are usually about 1 mile below the dam. The modeled gas productio

shown predicts the gas observed by these monitors. Gas levels in the stilling basin have be

observed to be 20-30% higher and separate efforts are being made to study the effects of 

higher, unstable values of TDG. For a map of the dissolved gas monitoring system go here

It should also be noted that the nearest downstream monitors to Bonneville Dam were 6

downstream, so it is expected that the gas levels at these monitors (WRNO and SKAW) wi

lower than those generated at the dam.

2.2.8 Assessment of temperature and TDG predictions

Similar to the passage prediction assessment, for each observation site we computed M

between predicted temperature or TDG values and the observed values. Hind-casts may h

change through the prediction period as observations were corrected, and updated informa

was used.

3 Results

Detailed inseason predictions of:

Ti tempmeani B0 B1 Fi flowmeani–( )⋅+ +=
10
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• Daily fish passage
• Downstream Passage & Transport of Fish Passing Lower Granite Dam
• In-River Survivals
• Passage and Transport Summary
• Smolt Passage Predicitons w/Historical timing Plots
• Total Dissolved Gas (TDG) forecasts
• Temperature forecasts

are presented graphically via pages on the World Wide Web at http://www.cqs.washington

To locate them from the main page navigate to “Inseason Forecasts”. Samples of WWW p

are shown in Appendix K.

In this report, selected CRiSP/Realtime predictions are analyzed and graphic presentat

these results follow in the various appendices.

3.1 Flow and Spill Forecasts

Forecasts of flow and spill were made available approximately every two weeks during 

season. Forecasted flows and spills for April 27, May 26, and June 28 at LWG, PRD, TDA,

BON are shown in Appendix E.

April forecasts of daily-averaged flow over the entire season at LWG were not accurate

reflects the uncertainty associated with weather conditions, snow melt, and runoff from the 

River basin. Considerable high-flow conditions occurred at the end of May and well into Ju

with flows peaking over 200 kcfs, but the April 27 forecast could not anticipate this spike in 

(Figure E-1) and corresponding spill that had to occur at LWG (Figure E-2). This flow and s

spike was propagated downstream as can be seen in the TDA and BON plots (Figure E-5 t

Figure E-8) There was also a great deal of variability on short time scales (days or weeks) 

actual flows and spills that was not captured in the long term forecast, this is particularly no

in the PRD forecasts for flow (Figure E-3). Spill forecasts at PRD considerably underestima

the actual spill for most of the summer.

Flow and spill forecasts affect both fish passage and temperature. Errors in these forec

have to be propagated through the model.

3.2 Temperature prediction
11
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The algorithm begins by setting the daily temperature to the historical mean value for tha

and then replacing the mean temperatures where year-to-date information is available. Giv

averaged starting point from the previous few days of current data, the next 3 weeks of tem

tures are calculated by taking the previous day's temperature and adding to it the historical

aged daily temperature increment for that day. Over the forecast period, the current trend o

temperature becomes less and less useful and eventually uncorrelated with future tempera

Thus for the long term forecaster, (over three weeks) this predictor is phased out of the cal

tion. This is when a simple linear regression against predicted flow is used to adjust the me

predicting what temperatures a month or more from reliable data will be.

A general trend of negative correlation between flow and water temperature can be see

data from the Snake and Columbia Rivers. By looking at yearly averages of water tempera

and flow, one can see that years with higher than average flows have lower than average w

temperatures and similarly years with lower than average flow have higher than average w

temperatures. Using a flow forecast file for a coming year, a prediction of temperature for c

made using the above relationship. Water temperature, however, is very noisy data being i

enced by several variables: air temperature and other weather conditions, water volume an

voir geometry, snowpack, upstream water releases, etc. Consequently the flow/temperatur

relationship only explains a small amount of the variation of water temperature within a yea

between years. As a result, averaged historical data plays a large part in the predictions m

with the above relationship only predicting a small amount of variation about the mean.

The most current year-to-date temperature and flow data are obtained from DART each

prediction is made. The year-to-date data was supplied by the Army Corps of Engineers, a

flow forecast was provided by Bonneville Power Administration (BPA). Mean temperature a

flow profiles were computed using the years 1976-1996, where data was available.

The algorithm developed for temperature has many desirable features. It concurs with t

most up-to-date data, it is consistent with historical seasonal patterns in temperature, and i

predicted flows to make moderate adjustments. Temperature predictions are currently done

once a week during the fish season -- April to September, coinciding with the generation of 

flow forecast from BPA. Temperature predictions were made each time a new flow forecas
12
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made available.

Sample predictions versus the 1998 observed temperatures for each of three reservoirs

shown in Appendix G. For all three reservoirs the predictions became more accurate as the

went on and more data for 1998 became available. Initially, the forecasts look smooth, anti

ing a change in temperature that roughly corresponds to the natural annual cycles of flow a

temperatures. However, there was a great deal of variability in the observed temperatures 

forecaster could not anticipate.

Appendix H shows, for each of the three dams (LWG, PRD, and TDA) a time series of h

accurate were the predictions on each day. In each of the plots, MAD is plotted for the fore

made on that day compared to the data (see '2.2.5 Assessment of predictions'). For examp

prediction made on Julian day 132 (May 11) was comparatively poor, off by an average 3.3

degrees for the entire season whereas the observation made one week later on Julian day

(May 18) was off by only .74 degrees for the entire season. The trend for the season is a s

improvement in the forecast compared to the data at all of the dams.

In general, short-term predictions (i.e. for the next week) were no better than long-term 

dictions (for the next several weeks); this is a consequence of lack of quality assurance for

to-date temperature data. Note that some of the “observed” temperature tracks shown in ar

ciously noisy. Since predicted temperatures take as their starting point the most recent “obs

temperatures, any inaccuracy in recent temperature records will be reflected in the short-te

dictions of temperature. CRiSP, while sensitive to temperature variation, does not produce

strongly different results for differences of only one or two Celsius degrees, however, so th

inaccuracies are unlikely to have contributed significantly to any model error.

3.3 Total Dissolved Gas prediction

Total Dissolved Gas forecasts were made each time a new spill forecast was made. Sa

predictions versus the 1998 observed temperatures for each of five monitoring sites are sh

Appendix I. For all monitoring sites the predictions became more accurate as the season w

and more data for 1998 became available. This is shown by the plots in Appendix J that ar

ogous to the prediction success plots shown for temperature. The forecasts use predicted 
13
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upstream dam(s) and temperature to anticipate dissolved gas concentrations so failed to p

the spike in dissolved gas as a result of the late May heavy flows. Overall, the dissolved ga

dictions improved through the season.

3.4 Passage distribution prediction

Table 2 presents the number of PIT-tagged fish from each stock observed at each of the

vation sites. For all stocks, fewer than half of the number of fish observed at Lower Granite

observed at McNary. The South Fork Salmon River stock has low observation numbers at a

sites.

Plots of predicted passage distributions compared to the observations of PIT-tagged fis

provided in Appendix C. The entire passage distribution predictions are presented for three

sentative dates: April 16, May 11, and June 2 to span the early, middle and late portions of

run. Previous to the date of prediction (vertical line) the model predictions are based on hin

passage for the best available river conditions. Ahead of the prediction date is the forecast p

based on anticipated river conditions (discussed in other sections: see 3.1, 3.2, 3.3). The th

tical bar represents the uncertainty of the forecast for that day based on historical condition

complete plots showing all historic conditions with the current forecast are available on our

site at http://www.cqs.washington.edu/. Navigate to “Inseason Forecasts” to make passage

Samples of WWW pages are shown in Appendix K.

Table 2: Number of PIT-tagged fish observed at the four observation sites.

Stock

Number of wild spring and summer chinook with PIT tags observed at

Lower
Granite

Little
Goose

Lower
Monument

McNary
John
Day

Bonneville

Catherine Creek 282 261 203 94 76 38

Imnaha River 159 131 108 67 24 22

Minam River 123 108 84 54 28 23

S. Fork Salmon
River

83 79 62 27 37 19

Composite 647 579 457 242 165 102
14
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In the plots in Appendix C, the predictions at Lower Granite Dam are based on RealTim

results, and the predictions at the downstream sites are CRiSP projections. Any error in the

diction at Lower Granite Dam is propagated to the downstream sites.

4 Discussion

4.1 Accuracy of Predictions

4.1.1 Temperature Prediction

The temperature forecasting algorithm was successful in creating an appropriate tempe

profile for each of the reservoirs. At LWG, the prediction accuracy (as measured byMAD)

steadily improved from a high of 1.8 degrees to less than 1.3 degrees. For TDA and PRD t

spikes in the seasonal prediction time series probably indicate a data error. The temperatu

rithm uses the year-to-date temperatures which at times can be provisional. Water quality d

subject to quality control, and sometimes altered, as late as 30 days after the date on whic

collected. Our prediction algorithm currently rejects values that are negative and screens in

ing temperature data for other bad data points including abnormally high values. This will pr

protection against nonsensical data.

By looking at the difference between the observed and predicted data points before the

casting line, one can see that some of the outlying temperatures were in fact later corrected

Corps. Any differences between the predictions and the observed data before the forecast

reflect the changes in the data after it was collected when quality control was applied to the

Lower Granite had a number of isolated points throughout the year that were corrected in t

manner. In light of the changes in historical data, in the future the algorithm will constantly re

the historical temperatures instead of just accessing the latest values for the current year. T

any of the quality assurance corrections will be incorporated into the prediction data files a

there will be no discrepancies between the observed and predicted temperatures for the da

to the time of the prediction.

Because yearling chinook migrate in the spring and early summer, they are not particul

vulnerable to temperature extremes. In CRiSP, although predation and gas saturation dyna

are somewhat temperature-dependent, the difference in estimated survival resulting from t
15
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ature variations of one or two degrees are minimal. The overwhelming majority of tempera

predictions fell well within the two-degree window, and thus we do not believe that inaccura

in temperature forecasts contributed significantly to errors in projections of fish passage.

4.1.2 Flow/Spill Predictions

Flow and spill forecasts provided by BPA improved in accuracy as the season progress

the accuracy of predictions for May and June flows and spills when estimated in April was 

very good due to the unanticipated spike in flow and spill. Early season forecasts are notor

poor (see Appendix F for comparison of late-March predictions in 1996, 1997, and 1998 co

pared to data), though some are clearly more realistic than others (compare 1997 predictio

IHR and PRD).

The near-flood conditions experienced in the Snake River basin were not forecast in mi

April and the underestimation of flow led to a related underestimation of spill at Snake proje

The CRiSP/RealTime model predicted that a larger fraction of the arriving fish would be av

able at all projects for detection than was in fact observed in May, since a large number of 

were swept over spillways during the unexpected high flow and spill. The failure of flow for

casts to adequately forecast the flow conditions a month later is a matter of some concern, 

recognized that springtime weather and runoff are very difficult to predict. BPA and other p

are currently working to improve forecasts of feeder drainages which may improve inflow fo

casts for major hydroprojects. This is important for accurate modeling.

These projections are further complicated by the dynamic nature of spill agreements: th

was also a redistribution of spill within the basin and even shifting of spill to projects outsid

the Columbia-Snake basin as part of coordinated efforts to minimize spill at Snake projects

spring. This was possible because of the regional nature of the generation/transmission sy

For example, given a certain electrical load to be met by all generating projects in the regio

Snake projects could be operated at maximum generating capacity (even to 1% above capa

minimize local spill and dissolved gas generation while a project outside of the Columbia-S

basin - e.g. on the Willamette - would spill more rather than generate. In 1996 there was an

agreed-to order by which the spill would be shifted. Again, the ad hoc nature of these decis

renders long-term forecasts less useful and requires constant updating of the input informa
16
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used by CRiSP/RealTime.

Estimates of the fraction of fish transported at Snake River projects will be sensitive to e

mated spill fractions: fish that are spilled are not collected for transportation. For accurate l

term projections of transport fractions, more accurate long-term projections of spill fraction 

be required. Even when spill fraction is accurately measured, variability in spill efficiency an

FGE can produce errors in estimated transport fractions.

The apparent lack of any prediction of spill for PRD throughout the season is similar for 

Columbia dams above the confluence with the Snake. Very low or no spill is reported in the

archives for these dams this year.

4.1.3 TDG Predictions

TheMAD results for TDG predictions are shown in Appendix J. The trend toward improv

ments inMAD are obvious as the season progresses. The larger values at the beginning of 

son are a result of the unanticipated spikes in the systemwide flow and corresponding spill

especially in the Snake system. Notice the very low levels after that point (approximately J

150). The finalMAD values are less than 2 for each of the dams.

4.1.4 Passage Timing Predictions

TheMAD results for RealTime and the downstream predictions are presented in Table 3

the end of the season. The RealtimeMAD is calculated from realtime output files at the end of t

season. The reported 1998 “run” and “prediction” percentages are used according to the m

in Equation (7). The downstreamMAD values are based on CRiSP output files for PIT tagged

fish.
17
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The composite stock performs better than the individual stocks at downstream locations

is to be expected as the composite stock has a substantially larger sample size. A decreas

formance at downstream dams such as the MAD of 12.7 for Minam River stock at McNary 

be due to the loss of fish as they move downstream. There are differences between stocks

well CRiSP/RealTime performed. Some examples of these are shown in more detail in gra

Appendix C on a stock-by-stock basis.

Seasonal variation in MAD values is plotted for select sites and stocks in Appendix D. I

readily apparent that upstream prediction errors are “propagated” downstream. Note how t

terns of MAD (though not necessarily the values) move in step through the season. The m

notable exception to this rule is the MCN (McNary Dam) MINAMR passage prediction profil

is anomalous, though does retain some of the seasonal character of the upstream dams as

ondary effect. Possible explanations for the anomalies include: unusual operations that coi

with MINAMR stocks passing, or errors in archived data or prediction files.

RealTime does not provide absolutely accurate estimates of arrival timing at Lower Gra

Dam; to the extent that there are errors in RealTime predictions, those errors will be propa

downstream by CRiSP. Also if spill efficiency curves1 are not perfectly accurate, errors will

1. The relationship between the percentage of fish passed through the spillway to the percentage of the 
that goes over the spillway. This is not necessarily linear.

Table 3: Mean absolute deviations (MAD) in smolt run timing predictions at the
four observation sites for the end of 1998.MAD at Lower Granite is from
RealTime (Burgess, 1999) the other three are from archived CRiSP run results.

Stock
RealTime
MAD at

L. Granite

DownstreamMAD

L. Goose Low Mon. McNary

Catherine Creek 8.38 3.12 3.87 3.70

Imnaha River 10.61 4.15 2.37 6.29

Minam River 7.77 6.49 4.88 12.7

S. Fork Salmon River 4.26 3.37 4.73 6.80

composite 2.57 3.82 1.35 1.31
18
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result. Note that there is no reason to expect predictions made on any particular date to pe

fit the arrival distribution preceding that date, because the final arrival distribution is conting

on arrivals through the entire system: if the run is 50% complete but RealTime estimates o

40% completion, for example, that will necessarily produce error both before the prediction

(underestimating) and after it (overestimating, to catch up).

Several potential sources of error exist for the downstream passage timing predictions. F

all, the downstream predictions depend on the RealTime predictions at Lower Granite. As 

above, and as can be seen in the figures in Appendix C, RealTime is not perfectly accurate

dicting arrival distributions at Lower Granite. Because RealTime is a statistical procedure, o

expects some degree of variation from the particular conditions observed in any particular 

Another source of error is in the CRiSP model predictions. The CRiSP errors can be divide

intrinsic model errors, errors in model inputs, and stochasticity in the data.

The two main functions of CRiSP in this application are to move fish downstream and to

track of survival and passage routes of fish. The primary model inputs are forecasts of flow

spill fractions. Flow is an important input because it partially determines the downstream m

tion rate of the fish.Behavior-dependent migration rate parameters - and confidence interva

about estimates of arrival distributions - are based on only a few years of data. The downs

passage distributions are based on modeled numbers of fish passing the PIT tag detectors

sion of migrating fish into sampling systems that detect PIT-tagged fish depends upon the 

ciency of spillways and fish diversion screens. The accuracy of CRiSP also depends upon 

correctly estimating the values of these parameters.

Spill has several effects on model output. First, it affects the passage routes of the fish 

higher spills, fewer fish pass through the bypass system where PIT-tagged fish can be dete

Survival of migrating fish is also affected by spill: high levels of spill lead to high dissolved n

gen levels, causing potentially lethal gas bubble trauma, behavioral alteration and vulnerab

predation. Distinct sigmoidal arrival distributions at dams below Lower Granite Dam may b

result of high levels of spill at those projects: fish that were detected at Lower Granite could

been swept over the spillways of lower dams, and would not have been detected. The sudd

tening of cumulative arrival distributions means that fish are not being detected and either d
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were spilled. Cramer (1996) found an association between high levels of dissolved gas and

increased smolt mortality during the 1996 outmigration.

4.2 Utility of CRiSP/RealTime Predictions in Management

Management of the hydrosystem for the benefit of salmon requires accurate assessme

the status of salmon outmigration and planned responses to various contingencies. For ex

one might elect to transport juvenile chinook at collection facilities, but separate fish when 

fall below some target value until the run has reached 80%. This policy requires an accura

assessment of when that 80% level is reached. Similarly, a policy that seeks to transport a

fraction of the run, say, 50%, can only be done if one has estimates of the state of the run 

fraction transported to date.

The cumulative passage forecasts provide managers with estimates of the fraction of a

run that will be exposed to expected spill, flow, dissolved gas levels, and transportation dur

given period of interest - generally the next one to two weeks. This allows both quantitative

qualitative assessment of the exposure these fish will experience to the conditions. Within 

the managers can choose to modify operational conditions. If spill is to be targeted for part

stocks, CRiSP/RealTime estimates of arrival distributions would allow managers to direct s

the projects where the bulk of the run is passing, but to reduce spill at projects where few fi

passing, in order to control dissolved gas levels. These in turn can be predicted by spill cap
20
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Appendix A  Map of Columbia and Snake River Locations
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 Figure A-1 Map of CRiSP locations

“●” are dam locations (not all are labelled by name). “✩” are approximate release locations

with a key letter as follows: S=SALRSF, M=MINAMR, C=CATHEC, and I=IMNAHR. The

darker river segments are explicitly modelled in CRiSP. Other segments are shown for refer-

ence only. Spill, elevation and flow predictions are made by BPA atall shown dams. Tem-

perature predictions are made at Lower Granite (LWG), Priest Rapids (PRD) and The Dalles

(TDA). Total dissolved gas is monitored at sites downstream of all dams shown and analyzed

for sites below Lower Granite-LWG (LGNW), Little Goose-LGS (LGSW), McNary-MCN

(MCPX), Priest Rapids-PRD (PRXW), and Bonneville-BON (SKAW). The stocks analyzed

in this report pass Lower Granite Dam (their arrivals predicted by RealTime) and results are

presented for their arrivals at Little Goose (LGS), Lower Monumental (LMN) and McNary

(MCN).



Appendix B  Migration rate parameters

Table B-1 Travel-time parameters Catherine Creek realtime stocks

Y
ear

Jacknifed

parameter estimates

Vvar
resid.

ssβMIN βMAX βFLOW α1

93 -7.92143 17.57202 0.69153 0.81440 161.42 954.19336

94 -7.07712 19.12557 0.62286 0.87235 148.74 888.08820

95 -2.65070 8.73349 0.66135 0.53521 213.28 699.10742

96 -0.47978 24.88123 0.45162 0.36362 178.33 938.65527

97 -14.28064 7.99431 0.99748  1.46475 152.92 814.53113

98 -11.96939 10.47875 0.77901 1.44999 171.41 1071.86731

Table B-2 Travel-time parameters Imnaha River realtime stocks

Y
ear

Jacknifed

parameter estimates

Vvar
resid.

ssβMIN βMAX βFLOW α1

93 -17.75393 5.67611 0.61782 3.05528 118.00 850.14746

94 -4.11743 20.56600 0.46878 0.51156 94.91 540.07471

95 -10.43916 7.23386 0.60042 1.85956 116.66 951.47253

96 -16.69429 7.69717 0.53949 2.61528 104.56 897.21954

97 -3.75201 35.91532 0.52141 0.19619 105.75 916.10858

98 -12.63446 7.63564 0.63148 1.81743 113.58 1037.96765
B-1



Table B-3 Travel-time parameters Minam River realtime stocks

Y
ear

Jacknifed

parameter estimates

Vvar
resid.

ssβMIN βMAX βFLOW α1

93 -5.92505 8.85883 0.34738 1.53633 132.60 752.87555

94 -1.39162 19.36032 0.19155 0.75167 132.54 576.29382

95 -2.14614 18.28440 0.19528 0.54893 146.03 694.83459

96 -0.65282  16.38717 0.11650 0.70504 132.92 717.29938

97 -39.33194 1.01751 0.96750 4.09990 139.64 621.40564

98 -10.06859 9.55578 0.37276 2.02888 139.22 848.57800

Table B-4 Travel-time parameters for Salmon River South Fork realtime stocks

Y
ear

Jacknifed

parameter estimates

Vvar
resid.

ssβMIN βMAX βFLOW α1

93 -12.19501 11.54776 0.41693 2.26388 107.11 820.99817

94 -14.47688 14.74327 0.29957  2.17545 113.49 449.70633

95 -9.98733 11.58685 0.39012 1.67567 130.00 1027.03308

96 -13.46872  11.38777 0.46026 1.75689 128.70 1180.62134

97 -3.20180 16.20171 0.04907 1.48006 123.51 1133.26941

98 -15.14658 10.88485 0.45846 1.98953 127.92 1195.29053
B-2
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Appendix C  Arrival Time Distribution plots

The following figures present the CRiSP/RealTime predictions on April 16, May 27, July

The three dates represent pre-migration, early migration and late migration times. The dash

represent the model predictions and the solid line is the observed distribution of PIT tag arri

dam (either Lower Granite, Little Goose, Lower Monumental and McNary). The predicted d

bution at Lower Granite Dam is generated by the Realtime program, and the predicted dist

tions at Little Goose, Lower Monumental and McNary are CRiSP projections based on the L

Granite prediction. The vertical line in each plot is the date of the prediction. The solid line s

the Confidence Interval based on historic data. Not all plots have confidence intervals disp

The historical runs can be displayed on world wide web pages devoted to presentation of a

time data. The home page for the project is found at http://www.cqs.washington.edu.
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Composite Stock - Lower Granite Dam (LWG)
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 Figure C-1 RealTime predictions for cumulative distribution of arrivals of the
Composite stock at Lower Granite Dam. Y-axis shows percent of total passage
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Composite Stock - Little Goose Dam (LGS))
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 Figure C-2 CRiSP predictions for cumulative distribution of arrivals of the
Composite stock at Little Goose Dam. Y-axis shows percent of total passage.
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Composite Stock - Lower Monumental Dam (LMN)
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 Figure C-3 CRiSP predictions for cumulative distribution of arrivals of the Composite
stock at Lower Monumental Dam.Y-axis shows percent of total passage.
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Composite Stock - McNary Dam (MCN)
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 Figure C-4 CRiSP predictions for cumulative distribution of arrivals of the Composite
stock at McNary Dam. Y-axis shows percent of total passage.
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Composite Stock - Bonneville Dam (BON)
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 Figure C-5 CRiSP predictions for cumulative distribution of arrivals of the Composite
stock at Bonneville Dam. Y-axis shows percent of total passage.
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Catherine Creek – Lower Granite Dam (LWG)

Julian Day
100 120 140 160 180 200

0

20

40

60

80

100 Data
Prediction

LWG: Jun. 2 Prediction vs. 1998 Data

Julian Day
100 120 140 160 180 200

0

20

40

60

80

100 Data
Prediction

LWG: Apr. 16 Prediction vs. 1998 Data

Julian Day
100 120 140 160 180 200

0

20

40

60

80

100 Data
Prediction

LWG: May. 11 Prediction vs. 1998 Data

 Figure C-6 RealTime predictions for the cumulative distribution of arrivals of the Cathe-
rine Creek stock at Lower Granite Dam. Y-axis shows percent of total passage
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Catherine Creek – Little Goose (LGS)
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 Figure C-7 CRiSP predictions for the cumulative distribution of arrivals of the Catherine
Creek stock at Little GooseDam. Y-axis shows percent of total passage.
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Catherine Creek – Lower Monumental (LMN)

Julian Day
100 120 140 160 180 200

0

20

40

60

80

100 Data
Prediction

LMN: Apr. 16 Prediction vs. 1998 Data

Julian Day
100 120 140 160 180 200

0

20

40

60

80

100 Data
Prediction

LMN: Jun. 2 Prediction vs. 1998 Data

Julian Day
100 120 140 160 180 200

0

20

40

60

80

100 Data
Prediction

LMN: May. 11 Prediction vs. 1998 Data

 Figure C-8 CRiSP predictions for the cumulative distribution of arrivals of the Catherine
Creek stock at Lower Monumental Dam. Y-axis shows percent of total passage
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Catherine Creek – McNary Dam (MCN)
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 Figure C-9 CRiSP predictions for the cumulative distribution of arrivals of the Catherine
Creek stock at McNary Dam. Y-axis shows percent of total passage.
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Imnaha River – Lower Granite Dam (LWG)
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 Figure C-10 RealTime predictions for the cumulative distribution of arrivals of the Imnaha
River stock at Lower Granite Dam. Y-axis shows percent of total passage.
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Imnaha River – Little Goose Dam (LGS)
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 Figure C-11 CRiSP predictions for the cumulative distribution of arrivals of the Imnaha
River stock at Little Goose Dam. Y-axis shows percent of total passage.
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Imnaha River – Lower Monumental Dam (LMN)
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 Figure C-12 CRiSP predictions for the cumulative distribution of arrivals of the Imnaha
River stock at Lower Monumental Dam. Y-axis shows percent of total passage
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Imnaha River – McNary Dam (MCN)
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 Figure C-13 CRiSP predictions for the cumulative distribution of arrivals of the
Imnaha River stock at McNary Dam. Y-axis shows percent of total passage.
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Minam River – Lower Granite Dam (LWG)
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 Figure C-14 Realtime predictions for the cumulative distribution of arrivals of the
Minam River stock at Lower Granite Dam. Y-axis shows percent of total pas-
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Minam River – Little Goose Dam (LGS)
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 Figure C-15 CRiSP predictions for the cumulative distribution of arrivals of the
Minam River stock at Little Goose Dam. Y-axis shows percent of total passage
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Minam River – Lower Monumental Dam (LMN)
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 Figure C-16 CRiSP predictions for the cumulative distribution of arrivals of the Minam
River stock at Lower Monumental Dam. Y-axis shows percent of total passage
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Minam River – McNary Dam (MCN)
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 Figure C-17 CRiSP predictions forthe cumulative distribution of arrivals of the Minam
River stock at McNary Dam. Y-axis shows percent of total passage.
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South Fork Salmon River –Lower Granite Dam (LWG)
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 Figure C-18 RealTime predictions for the cumulative distribution of arrivals of the S. Fork
Salmon stock at Lower Granite Dam. Y-axis shows percent of total passage.
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 Figure C-19 CRiSP predictions for the cumulative distribution of arrivals of the S. Fork
Salmon River stock at Little Goose Dam. Y-axis shows percent of total passag
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South Fork Salmon River – Lower Monumental Dam (LMN)
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 Figure C-20 CRiSP predictions for the cumulative distribution of arrivals of the S. Fork
Salmon stock at Lower Monumental. Y-axis shows percent of total passage.
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South Fork Salmon River – McNary Dam (MCN)
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 Figure C-21 CRiSP predictions for the cumulative distribution of arrivals of the S. Fork
Salmon River stock at McNary Dam. Y-axis shows percent of total passage.
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Appendix D  Seasonal Variation in Passage Predictions

Passage predictions during the season vary as as  function of changes in river condition

past predicted values. RealTime predictions of arrivals at Lower Granite Dam are used as i

CRiSP1 which then predicts the arrival of fish at downstream locations. In the figures that fo

MAD computations for each modeled day of arrivals at Lower Granite Dam, Lower Monum

Dam and McNary Dam are displayed. Patterns of prediction success at an upstream locati

propogated downstream.
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 Figure D-1 Seasonal variation in passage prediction sucess for the Composite  stock at Li
Goose, Lower Monumental and McNary Dams Y axis is theMAD value.
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 Figure D-2 Seasonal variation in passage prediction sucess for Catherine Creek  stocks a
Goose, Lower Monumental and McNary Dams. Y axis is theMAD value.

Julian Day
100 120 140 160 180 200 220

2

4

6

8

10

12

LMN CATHEC Passage Prediction Success

Julian Day
100 120 140 160 180 200 220

2

3

4

5

6

7

8

MCN CATHEC Passage Prediction Success

Julian Day
100 120 140 160 180 200 220

2

4

6

8

10

12

14

LGS CATHEC Passage Prediction Success
D-3



ttle
.

 Figure D-3 Seasonal variation in passage prediction sucess for Imnaha  River stocks at Li
Goose, Lower Monumental and McNary Dams. Y axis is theMAD value.

Julian Day
100 120 140 160 180 200 220

2
4
6
8

10
12
14
16

LMN IMNAHR Passage Prediction Success

Julian Day
100 120 140 160 180 200 220

6

8

10

12

MCN IMNAHR Passage Prediction Success

Julian Day
100 120 140 160 180 200 220

4

6

8

10

12

14

16

18

LGS IMNAHR Passage Prediction Success
D-4



.

 Figure D-4 Seasonal variation in passage prediction sucess foMinam River stocks at Little
Goose, Lower Monumental and McNary Dams. Y axis is theMAD value.
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 Figure D-5 Seasonal variation in passage prediction sucess for South Fork Salmon River 
at Little Goose, Lower Monumental and McNary Dams. Y axis is theMAD value.
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Appendix E  Flow/Spill Forecast Plots

Flow and Spill plots for four dams: Lower Granite (LWG), Priest Rapids (PRD), The Dal

(TDA), and Bonneville (BON). The Y axis on the  graphs is cubic feet per second (CFS). Th

tical line in the plot marks the date of the prediction.
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 Figure E-1 Flow predictions and observations for Lower Granite Dam. Y axis shows CFS
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 Figure E-2 Spill predictions and observations for Lower Granite Dam. Y axis shows CFS
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 Figure E-3 Flow predictions and observations for Priest Rapids Dam.Y axis shows CFS.
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 Figure E-4 Spill predictions and observations for  Priest Rapids Dam. Y axis shows CFS
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 Figure E-5 Flow predictions and observations for The Dalles Dam. Y axis shows CFS.
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 Figure E-6 Spill predictions and observations for The Dalles Dam.Y axis shows CFS.
E-7



A

Julian Day
50 100 150 200 250

100000

200000

300000

400000
Data
Prediction

BON: Apr. 27 Prediction vs. 1998 Data

Julian Day
50 100 150 200 250

100000

200000

300000

400000
Data
Prediction

BON: May. 26 Prediction vs. 1998 Data

Julian Day
50 100 150 200 250

100000

200000

300000

400000
Data
Prediction

BON: Jun. 28 Prediction vs. 1998 Data

 Figure E-7 Flow predictions and observations for Bonneville Dam.Y axis shows CFS.
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 Figure E-8 Spill predictions and observations for Bonneville Dam.Y axis shows CFS.
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Appendix F  Spill Forecast History Plots

Spill predictions during the early season are difficult to make. Shown here are late Marc

dictions compared to data for Priest Rapids and Ice Harbor. For the last three years, there h

at least one spike in the spill volumes (mostly due to large flows in the system).
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 Figure F-1 Early season spill predictions for the last three years compared to data at Pri
Rapids Dam.
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 Figure F-2 Early season pill predictions for the last three years compared to data at Ice H
bor  dam.
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Appendix G  Temperature Forecast Plots
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 Figure G-1 Temperature predictions and observations for Lower Granite Dam. Y axis is 
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 Figure G-2 Temperature predictions and observations for Priest Rapids Dam. Y axis is ˚
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 Figure G-3 Temperature predictions and observations for The Dalles Dam. Y axis is ˚C.
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Appendix H  Seasonal Variation in Temperature Forecasts

For each day that a prediction was made, the  Mean Absolute Deviation was calculated

each day in the season for which there was both an observation and a prediction. (See tex

“Assessment of predictions” on page 8).

These MAD values are plotted as a time series to see how the predictions changed thro

season. If the predicted values exactly matched the observations, the MAD for that day wo

zero. In the plots that follow, the MAD value is on the Y-axis and the Julian day is on the X
H-1
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 Figure H-1 Seasonal variation in temperature prediction success at three locations as me
by MAD (Y-axis).
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Appendix I  Dissolved Gas Forecast Plots

Total dissolved gas predictions and observations are shown in the following plots for fiv

monitoring sites downstream from dams. The X-axis is the Julian day and the Y-axis is the

centage super-saturation.
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 Figure I-1 Total Dissolved Gas predictions and observations for Lower Granite Dam as
measured at LGNW. Y axis is the percent saturation.
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LGSW: Apr. 20 Prediction vs. 1998 Data
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LGSW: Jun. 15 Prediction vs. 1998 Data
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 Figure I-2 Total Dissolved Gas  predictions and observations  for Little Goose Dam as m
sured at LGSW. Y axis is the percent saturation.
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MCPW: Apr. 20 Prediction vs. 1998 Data
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 Figure I-3 Total Dissolved Gas  predictions and observations  for McNary Dam as measu
at MCPW. Y axis is the percent saturation.
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PRXW: Apr. 20 Prediction vs. 1998 Data
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PRXW: Jun. 15 Prediction vs. 1998 Data
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 Figure I-4 Total Dissolved Gas  predictions and observations  for Priest Rapids Dam as m
sured at PRXW. Y axis is the percent saturation.
I-5



A

a-
Julian Day
100 150 200 250

100

105

110

115

120

125

130

.
..
.................

.
.......

..........................
.....................................................................................................

.
....

....
.
......

Data
Prediction

SKAW: Apr. 20 Prediction vs. 1998 Data
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SKAW: Jun. 15 Prediction vs. 1998 Data
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 Figure I-5 Total Dissolved Gas  predictions and observations  for Bonneville Dam as me
sured at the SKAW site. Y axis is the percent saturation.
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Appendix J  Seasonal Variation in TDG Forecasts

Prediction success for Total Dissolved Gas throughout the season is show for five moni

sites below dams. The X-axis is the Julain day and the Y-axis is the average daily error in p

age (points) for the prediction made on that day compared to the data for the entire season
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 Figure J-1 Season variation in Total Dissolved Gas prediction at three monitoring sites be
Lower Granite Dam, Little Goose Dam and McNary (top to bottom respectively).
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 Figure J-2 Season variation in Total Dissolved Gas prediction at two  monitoring sites belo
Priest Rapids Dam and Bonneville Dam (top to bottom respectively).

Julian Day
100 150 200 250

1

2

3

4

5

6

PRXW gas Prediction success

Julian Day
100 150 200 250

2.0

2.5

3.0

SKAW gas Prediction success
J-3



A

Appendix K  Example Graphics from WWW Pages
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 Figure K-1 Screen shot from WWW page, showing the five thumbnail graphs of cumulati
percent arrival, with confidence intervals where available, at each of the Snake
projects and McNary Dam, for the composite yearling chinook stock. This esti-
mate was made on the 11th of May. Clicking on a thumbnail produces a large 
sion of the graph for that dam alone (Figure K-2)).
K-2



A

h
al
d
e

l
 

 Figure K-2 Screen shot from WWW page, showing the graph for a single dam. This grap
shows cumulative arrival at Little Goose Dam, estimated on May 11. The vertic
line shows the day of the prediction; the “forecast” is to the right of that line, an
“current” to the left of it. Available years of data are overlaid on the plot. The sam
plot can be generated for a variety of individual stocks, with or without historica
data, and can also be smoothed. Note the fairly large confidence interval (79%
31%); this is typical during the peak of migration.
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